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The mechanics of flows of disperse gases and vapor droplets with allowance for the many 
processes of mass, momentum, and energy transfer between phases has been thoroughly investi- 
gated to date [1-3]. Far less attention has been given to the kind of nonequilibrium pro- 
cess found in the rotation of dispersed particles when they collide, e.g., in the vicinity 
of the critical cross section of a nozzle [4]. In the case of liquid drops, rotation leads 
to their deformation, changes the heat- and mass-transfer coefficients, and alters their 
force interaction with the gas. Vasenin et al. [4] have investigated the equilibrium shapes 
of rotating drops restrained by the forces of surface tension, which keeps them from break- 
ing up, and they formulated the mechanics of a mixture containing rotating particles exposed 
to continuous flow. 

In the present article we discuss the mechanics and heat and mass transfer of rotating 
drops in the following aspects. Firstly, finely dispersed particles can enter into the free 
molecular flow regime even inside the nozzle because of rapid expansion of the carrier gas 
[5], or they can enter into a distinctly rarefied (relative to particles) medium [6]. Se- 
condly, the onset of a lateral force (of the Magnus type) will necessarily impart a transverse 
displacement to the particles and cause their trajectories to intermingle. Thirdly, there is 
a domain of parameters of the particles and the gas flowing around them where the tempera- 
ture equalization time in the particle volume is commensurate with the time constants of 
other relaxation processes, making it necessary to solve the heat-conduction equation inside 
an ellipsoidal particle. Fourthly, both the self-radiation from a small (comparable with the 
characteristic wavelength) particle and externally incident radiation scattered by it depend 
on the shape of the particle [7], so that the optical characteristics of a vapor-drop flow 
with rotating particles can differ, in general, from what they would be in the absence of 
rotation. 

The dynamics of a rotating sphere in free molecular flow has been investigated previous- 
ly [8], but an expression was not given for the drag torque. Expressions have been derived 
[9] for the lift-to-drag ratios of various bodies moving in a rarefied gas "at satellite 
velocities," along with the additional forces and torques generated by the slow rotation of 
certain bodies (a circular cylinder and a cone), subject to the condition that the flow vel- 
ocity around the body is much greater than the circumferential velocity associated with ro- 
tation. The rotational derivatives of rapidly moving (in the supersonic approximation) bod- 
ies with a fixed geometry have been investigated [i0]. In application to the mechanics of multi 
phase jets it is necessary to expand the force and torque expressions for all values of the 
dimensionless flow velocity S = U/]/2-~ and the relative circumferential velocity l~• 
(particularly in the case of rotation of a spherical particle whose center of mass is fixed 
relative to a surrounding element of the carrier medium). 

Of all the possible relative positions of the flow velocity vector and the particle an- 
gular momentum vector, we choose the orthogonal case (~ • u), which has direct bearing on the 
mechanics of two-phase jets: it has been noted in studies of two-phase nozzle flows [4] 
that the angular velocities of the particles are mainly perpendicular to the flow axis be- 
cause of their collision in the vicinity of the critical cross section. 

i. STATEMENT OF THE PROBLEM 

We consider a drop that rotates with an angular velocity and is immersed in a free mole- 
cular flow of a carrier gas with a relative velocity U= V --Vp . The main assumptions are 
as follows: i) investigations of the equilibrium of a drop have shown [4] that it has an 
oblate ellipsoidal shape under the condition ~* = p0 ep~m2/o~ s 2.5 (o ~ p0 are the coeffi- 
cient of surface tension and the density of the liquid, and a T is the radius of a volume- 
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equivalent sphere); 2) it is evident from experimental work that in order for a nonrotating 
drop to preserve its shape in an impingent flow, the dimensionless Weber number We = 2ap pU2/ 
o ~ (p is the density of the gas) must not exceed the critical value We* = I0; consequently, 
We must be much smaller than We* in order for the oblateness of the drop in the impingent 
flow to be disregarded. This requirement can be rewritten as a constraint on the dimension- 
less flow velocity S 2 ~ 3PL/P (PL = 2~176 is the Laplacian pressure in the interior of a 
spherical drop, and p = pRT is the static pressure in the gas flow); 3) we also assume that 
the kinetic energy of the colliding molecules is not greater than the binding energy of sur- 
face molecules of the drop; otherwise collision would knock the molecules out of the drop, 
and this process is not described in the present article. Accordingly, S ~ ~ L/RT (L is the 
specific heat of vaporization). 

4) We estimate the influence of particle rotation on the process of heat conduction in 
its interior volume. Numerical calculations [ii] have shown that in the case of a nonrotat- 
ing spherical particle of finite thermal conductivity in a free molecular flow the tempera- 
tures of the fore and aft points of the sphere can differ appreciably (by an amount of the 
same order as the temperature itself) due to the strong surface inhomogeneity of the heat 
flux density. The time scale of temperature equalization in the sphere is well known: ~w = 
p~176 ap 2/~o (c o ' ~o are the specificheat and thermal conductivity of the particle material). 
Consequently, if the time for the particle to rotate about its axis is much smaller than 
this time scale (~w m i), rotation makes the heat transmission in the drop independent of 
the azimuth angle. In this case the dissipation of energy by drag-induced friction inside 
the drop and the convection induced by buoyancy in the field of centrifugal forces are negli- 
gible; 5) it can be shown that the radius of the drop must be greater than i0 -I~ m in order 
for the ratio of the specific energy of rotational motion ~2a~/2 and the specific energy 
of phase transition L to be much smaller than unity. Consequently, this condition clearly 
holds in all cases of practical interest for the mechanics of two-phase flows: we find 
that the rotating particle breaks up long before its rotation begins to have any significant 
influence on the evaporation rate; this fact justifies our disregard of centrifugal kinetic en 
ergy in comparison with the thermal and phase-transition energies. Under this assumption, 
sublimating solid spherical particles remain spherical at all times. 

2. SYSTEM OF EQUATIONS FOR THE MECHANICS, HEAT TRANSFER, 
AND MASS TRANSFER OF AN ELLIPSOIDAL DROP 

An element of surface of the ellipsoid can be written in the form 

a ~ sin a da d~ b k2 8 -  2 dee = ~aO- (i + k 2 sin 2 a) 2 ' t g a = 82 tg O, 8 - -  . . . .  a ' i ,  

w h e r e  a and  b a r e  t h e  s e m i m a j o r  and  s e m i m i n o r  a x e s  o f  t h e  m e r i d i a n  c r o s s  s e c t i o n  a n d  O and  
a r e  t h e  p o l a r  a n d  a z i m u t h  a n g l e  i n  s p h e r i c a l  c o o r d i n a t e s .  

I n t e g r a t i o n  o f  t h e  known m a s s ,  momentum, and  e n e r g y  f l o w  d e n s i t i e s  o v e r  t h e  s u r f a c e  o f  
t h e  r o t a t i n g  e l l i p s o i d  [12 ]  y i e l d s  q u a d r a t u r e s  t h a t  c a n n o t ,  i n  g e n e r a l ,  be  e x p r e s s e d  i n  e l e -  
m e n t a r y  f u n c t i o n s  : 

drop = a2 { als ) 
13" dr- V ~  [ ( t  + 2S z) 11 + 2k2S212 -l- P / t  + k 2 exp (--$2)] --ahps (Tp)<c (Tp))2E e , 

co dT~ _ a 2 2O<__c>_ (1 a1~) (T T~) 2Tp + ah- f f -T  X 

X [(1 + 2S2) f ,  + 2k~S212 + Vl + kz exp ( - -  $2)] + <c>ga~T[a~(l --a,,) + a~] {2(t  + 3S 2 + S ' ) I ,  + 

- [ - [2S 2 ( 2 + S  2 ) ( t + k  ~ ) - S  2(2S " ~ + 5 ) ] I ~ + ( 2 + S  - ~ ) l / t + k  2 e x p ( - - S 2 ) } - -  

cV x;,e L ",4 Tp , 
- - a d , , ( T p ) < c ( r v ) } r , 2  2 + - - ~ -  . + f3*dt x -~ t  

dVp 8a 2 ( 
rnp-U7 F=  , o U U ~  [(2 - -  ~,~) (1 - -  ~i,) + ~h] X 

[ -V~er rS  3k a+2So-(3-A-(l- '-k2) ~) + 3k 2 ( l + k  2 ) - 8 3 2  

X ~2s ~ 1/1 + ~' 6k 4 l / t  + k 2 [1 - -  

5 + 3b 2 S"[o S~ exp (-- S ~ ] + 
" , , 2  - 2 ] ~ 2  J 3k"V'l :-~ 3 ~/~ 13 
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+ 

k 2 --  2 --  3k z + 8S 2 
+ [~,~ + ~(1-~ ,01  V : ~ S e ~ ' f s ~  + 6~V ~ I~ + 
k 2 + S 2 (10 -- 6k ~ -- 61,A) [~ S 1 ~-k 2 ] 

@21//1 + k ~ z + 3 1 /  ~ 13 + ~ exp ( - -  S2)J + 

+ ~ ?  ~ - T [ 0 + 2 7 : - ) ( 2 ~ - t )  - ~ ]  + 

4 [cq (1 - -  ~h) + ~hl (~  • U), 
+ - 5 -  

j e  do) 
~* dt 

+ 

5 Oa4Uo) [ 4 o , o , o o 
] / ~ s  [a~ (t  - -  ock) + ~h] [ sk + 3k ~ ~- l - 2s-  (1-7- ~-)- I~ + 

2S 214k 4-2-k 2 + 1 - 2 ( t + k  2)(k ~  r  2 ]//1 -q- k 2[.,-{- 
k4 - 

+ 2k 4 - 2 k  2 + 2 ( t + k  2) S 2 - t  } 
k4 exp (-- S 2) , 

m p = a ~ = a 2 b = e a  3, j ~ = e a ~ ,  ~ ,  3 v* r* 
8 90 ap 

1 
[n = ~ x2(n-a) exp (-- S"-x 2) 

(1 -i- k2x~ 1/2 dx, 
0 

"-'~ = ~ + ak / i + k ~ I / i== ,  k - -~ '~  " 

Here mp, je, and E e are the mass, moment of inertia about the rotation axis, and the surface 
area of the ellipsoid, cv I is the specific heat of molecular internal degrees of freedom, ~k, 
~e, ~n, and a t are the energy coefficients of condensation and accommodation and the normal 
and tangential components of the momentum (these coefficients are taken equal to unity in 
the ensuing calculations). We assume that equilibrium exists in all degrees of freedom. 

The system of equations is closed by the algebraic function E(a*), whose exact expres- 
sion is given in [4] and which can be represented approximately by a straight line s z 1 + 
~*/8 ( in the interval a* < 2.5 corresponding to an ellipsoid of revolution). In this sys- 
tem of equations the values of the gasdynamic parameters are normalized to the appropriate 
scales of density p*, velocity V*, temperature T*, and distance r*; the time scale is t* = 
r*/V*, and the particle radii a and b are normalized to the radius Cp of the volume-equiva- 
lent sphere. In the calculations we set these scales equal to the values of the parameters 
in the initial cross section x = 0. 

Radiation energy losses are disregarded in the equations describing the heat content of 
the particle. This assumption is particularly justified insofar as a small particle does 
not radiate the entire spectrum of the solid body, but only the spectrum cut off at the long- 
wavelength end [13]. The input temperature Tp in this system corresponds to the hypothesis 
of a volumetrically isothermal particle. 

In addition to the given system, we solve the equation for heat conduction in the parti- 
cle interior 

ar ~ I a f~0 aT~ s176176 9%00t = 7 -  0-7-~ r - s  + Oz----------C-- ~ 

subject to the boundary condition 3T~ = u where the surface energy flux density norm- 
alized to p*e .3 has the form 

3• -- l T O 

8(• 
~/2 

Q5 = j" exp(--S 2cos 20sin 2~)(sin0sin~)2(j-i)d0, ]=1,2; 
0 

y* = 9*a*3a*p (T*~~ -1,  a* ~ V*; 
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the saturation pressure Ps in the liquid-vapor phase transition is normalized to p'a*< 
(Here, for simplicity, all the accommodation coefficients have already been set equal to 

unity.) 

3~ RESULTS OF A NUMERICAL ANALYSIS OF THE DYNAMICS, HEAT TRANSFER, 
AND MASS TRANSFER OF A ROTATING PARTICLE 

The well-known three-layer Dufort-Frankel scheme [14], which is stable for any rela- 
tions between the time step �9 and the spatial step h within error limits of the order H = 
O(~ 2 + h 2 + (z/h)2), is used for the integration of the heat-conduction equation in the 
interior of the particle. For z = h 2 and h < 10 -I we have ~ < 10 -2 . We give the results 
of a numerical analysis of the dynamics and heat and mass transfer of particles accelerated 
by a quasi-one-dimensional flow, whose cross section varies linearly along the axial coor- 
dinate: F/F* = 1 + x/20. We investigate solid spherical particles and deformed liquid 
drops, whose angular velocity is limited by their ellipsoidal configuration (here ~* = 2.5). 
The thermophysical properties of the substances (density, surface tension, specific heat, 
thermal conductivity, heat of phase transition, and saturated vapor pressure) are approxi- 
mated by simple functions of the temperature on the basis of tabulated data. The values 
of the dimensionless parameters of the problem K, ~*, 6*, Y*, L, c~ are given below. 

Figure 1 shows the downstream distributions of the velocity, density of the gas, and 
the parameters of a rotating liquid metal oxide particle of constant mass for two sets of 
dimensionless parameters corresponding to a five-fold difference only in the value of the 
characteristic density of the gas. Clearly, as the density increases, the angular velocity 
and eccentricity of the particle decreases more and more rapidly, and the linear velocity 
quickly relaxes to the velocity of the gas. Here K = 1.4, R/c ~ = 0.21, the solid curves 
correspond to 6" = 4.7 • 10 -2 and u = 0.31, and the dashed curves correspond to values of 
0.235 and 1.55 for these quantities. 

Figure 2 shows the shape of the surface and isotherms in the volume of the particle 
at three successive times. (We recall that the temperature scale is the initial value of 
the gas temperature T*.) We see that only regions of the rotating drop close to its equator 
experience any cooling at the first of these times [t I = 0.05, x I = 0.418 (a)], whereas its 
central regions are still surrounded by closed equal-temperature surfaces with values ap- 
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Fig. 3 

proximately equal to the temperature specified at the initial time Tp* = 1.2. Subsequently, 
[at time t 2 = 0.i, x 2 = 0.92 (b)] the isothermal surfaces become almost cylindrical, and 
with further slowing of rotation [t 3 = 0.5, x s = 6.25 (c)] the drop is almost spherical and 
volumetrically isothermal. The values of the coordinate indicated for these times can be 
used to "tie in" the isothermal patterns with the parameters of the particle and the gas in 
Fig. 1 (dashed curves). 

Figure 3 shows the variation of the deviation (perpendicular to the axis) of the trajec- 
tory of a rotating solid spherical particle; we see that the angular deviation ~0= tan-1 (y/ 
x) attains i0 ~ in this example. As a result, the number of particle collisions in the multi- 
phase flow can increase. The initial value of the angular velocity of the particle is chos- 
en so as to achieve a uniform energy distribution among the degrees of freedom in applica- 
tion to particle chaos (where the energies of rotational and translational motion are of the 
same order) and is two orders of magnitude greater than the limiting angular velocity in the 
case of a liquid particle of the same material. The same figure illustrates the strong 
thermal nonequilibrium of the particle and the carrier gas. Here K = 1.4, ~* = 0.235, y* = 
1.55, and ~0 = lOa 

Figure 4 shows the analogous parameters for a drop accelerated by vapor of the same sub- 
stance and subjected to surface phase transitions. The capricious variation of the mass and 

t 

~5 
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�9 

Fig. 4 Fig. 5 
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slip along the coordinate is attributable to the fact that vapor is injected into the flow 
at the initial point of the drop in such a way as to establish conditions for condensation 
on its surface. As a result, its mass increases at first and then decreases monotonically 
due to the prevalence of evaporation. In this case the mean surface temperature <T> s is 
lower than the isothermal temperature Tp at the initial times, but then they eventually 
equalize. The slip and temperature of the drop rapidly approach almost constant values 
(within the limits of the figure), and the eccentricity remains constant as well, despite 
the appreciable monotonic decrease in the angular velocity, indicating much stronger evapora- 
tion at the poles than at the equator (the temperature is higher at the poles; cf. Fig. 2). 
Here ~ = 9/8, ~* = 0.26, ~* = 1.12, R/c ~ = 0.058, L = 13.83, Ps = 4.1 x 10 -3 exp(20.295 - 
1 3 . 4 / T ) .  

4. OPTICS OF AN ELLIPSOIDAL PARTICLE: SCATTERING OF EXTERNAL RADIATION 

The scattering of an electromagnetic wave by an ellipsoid of material having a specific 
complex refractive index m = n I - in 2 is analyzed on the basis of a method, which is analo- 
gous to Mie theory for a sphere and is described, e.g., in [7], for solving the Maxwell equa- 
tions outside and inside the investigated body. Taking into account the smallness of the de- 
formation of a drop in comparison with a sphere and restricting the expansions to the first 
terms, we obtain expressions for the components of the electric field diffracted by the el- 
lipsoid: 

E~ = iE~ 
- -  kr s i n  q9 exp  (-- ikr) (czQz + btSz) + i m~ -- 1 kaV~F (6, ~) 

/ l=1 4rim2 ' 

E~ ~s~ ~ , ~ .  ~. (6, ~) cos ~ . /~r cos q9 exp  ( - -  ikr) (czSl + bzQz) - -  i m2 - 1 7 av~v  

where Q~ = P~l(cos$)/sinB; S~ = -P~Z(cos $) sin~; p i are first-order Legendre polynomials, 
V e = (4/3)~a2b = (4/3)~a~ is the volume of the ellipsoid or an equivalent sphere of radius 
ap; k = 2~/X is the wave number, 6 is the angle between the incident wave vector k and the z 
axis, ~ is the angle between the vector k and the direction of observation B0; and ~ is the 
azimuth angle of the direction R 0 in polar coordinates (--k, E, H) (Fig. 5). 

The coefficients of the expansion in Legendre polynomials are well-known: 

2z + t % (~) ~i ('~) - ,,~'~ (~) % (,~) 
cz = ~ (1 + l) h ~)  ~z (m~) - '~-~'z (~) % (m~) ' 

b, = ~ (z + t) ~ (~) ~ (~)  - ~;~ (m~) ~ (~) 

Here 
l -  

= :,+i12 = r --f-  ~ z+~t2 (~); ~ = 2nav/~; 

J~+I/2, H~+I/2 (2) are Bessel functions and Hankel functions of the second kind of half-inte- 
ger orders. 

We note that the corrections for the ellipsoidal geometry in the expressions for E~ and 
E 8 are more precise than in the expansions of the functions only in the small quantities 
(m2 _ l)/4~m 2 [7]. This means considerable relaxation of the demand for smallness of the 
deviation of the modulus of the refractive index from unity. For example, the error is of 
the order of 5% for b/a = E = 0.5 and m = 2. 

Figure 5 shows the angular scattering diagrams for a monochromatic unpolarized plane 
electromagnetic wave incident on a sphere (solid curve) and on an ellipsoidal particle for 
two directions of incidence: parallel to the equatorial plane and the symmetry axis (dashed 
curve; the diagrams for these two cases coincide within the limits of the thickness of the 
dashed curve) and at the angle ~/4 relative to the axis (dot-dash curve), ~ = i, b/a =0.835. 
(We recall that the vector k indicates the direction of the incident wave.) 

The authors are grateful to M. N. Kogan for attention and interest. 
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THERMAL CHARACTERISTICS OF A COUNTER-CURRENT WALL JET 

V. P. Lebedev and M. I. Nizovtsev UDC 532.526.4 

Counter-current flows are widely encountered in nature and take place in different pro- 
duction processes and equipment. For example, counter-flowing wall jets are used in welding 
in an inert gas, in the gasdynamic regulation of the nozzle of a turbojet engine, and in 
modeling atmospheric processes. The use of gas screens [i] may be very effective in protect- 
ing elements of power-plant equipment from high-temperature gas flows. In certain cases, 
due to the design features of the processing equipment, thermal protection of the wall can 
be provided by feeding a coolant gas through a slit counter to the flow or at a large angle 
to the direction of its motion [2, 3]. Despite the frequent use of countercurrent wall jets 
in different types of equipment, their study has been limited. 

Here, we experimentally investigate the process of thermal mixing of a counter-current 
wall jet with a gas flow, and we determine the efficiency of the thermal protection of an 
adiabatic wall in the direction of motion of the jet. It is shown that under certain con- 
ditions, a counter-flowing wall jet can effectively protect the wall of a channel. 

A diagram of the flow we studied is shown in Fig. i. In the tests, the counter-current 
wall jet was created by injecting air through a tangential slit of height s = 4.7 mm. The 
slit was made in the bottom wall of an aerodynamic channel with a cross section of 150 • 145 
mm and a length of 1200 mm. The working wall of the channel was adiabatic and was made of 
glass-textolite. The velocity of the main air flow in the tests was kept at a constant 
value U 0 = 16 m/sec. The velocity of the secondary flow was varied from 6 to 51 m/sec. 
Here, the injection parameter m = PsUs/p0U0 was varied within the range 0.3-2.6. The temper- 
ature of the main flow T o = 15-20~ while the temperature of the secondary flow T s = 70-80~ 
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